
November 28th, 2011

Final Exam Practice Problems With Solutions

Logistic Regression Practice

(1) Logistic Regression Basics:

(a) Explain what the response variable is in a logistic regression and the tricks we use to convert this into
a mathematical regression equation.

Solution: In a logistic regression the response variable, Y, is an indicator saying whether or not you have
a particular characteristic, say lung cancer. The problem is that the value of an indicator is always 1 or
0–this is how we turn something qualitative into something quantitative. Unfortunately a model of the form
β0 + β1X1 + β2X2 doesn’t produce values that are exactly 0 or 1. Thus instead we focus on modeling the
probability that Y=0 or Y=1. Even this isn’t quite good enough as a probability is between 0 and 1 and
their is no certainty that β0 + β1X1 + β2X2 will lie in that range. Thus we do one more trick which is to
take the odss that Y=1, given by P (Y = 1)/PY = 0) and take the log to get a number between negative
and positive infinity. This is the number we model using our standard regression formula.

(b) Explain what an odds ratio means in logistic regression.

(c)) Explain what the coefficients in a logistic regression tell us (i) for a continuous predictor variable and
(ii) for an indicator variable.

Solution for (b) and (c): The coefficient β1, for a variable, X1, in a logistic regression gives (i) the change
in log odds of Y associated with a one-unit change in X1, assuming all other variables are held fixed, for
continuous variables and (ii) the difference in log odds between having and not having a given characteristic
for an indicator variable, all else equal. The odds ratio for a variable, X1 in a logistic regression gives the
corresponding impact of X1 on the odds that Y=1. For instance, suppose that Y is whether or not you get
lung cancer, X1 is your age and X2 is an indicator for whetehr or not you smoke. Then the odds ratio for X1

gives the increase in the odds of getting lung cancer associated with being a year older, assuming you have
adjusted for smoking status, while the odds ratio for X2 gives the relative chances of getting lung cancer for
smokers versus non-smokers, assuming age has been adjusted for.

(2) Cardiovascular Disease (Based on Rosner 13.58-61): Sudden death is an important, lethal car-
diovascular endpoint. Most previous studies of risk factors for sudden death have focused on men. Looking
at this issue for women is important as well. For this purpose, data were used from the Framingham Heart
Study. Several potential risk factors, such as age, blood pressure and cigarette smoking are of interest and
need to be controlled for smilutaneously. Therefore a multiple logistic regression was fitted to these data
as shown below. The response is 2-year incidence of sudden death in females without prior coronary heart
disease.
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Risk Factor Regression Coefficient (bj) Standard Error (se(bj))
Constant -15.3

Blood Pressure (mm Hg) .0019 .0070
Weight (% of study mean) -.0060 .0100
Cholesterol (mg/100 mL) .0056 .0029

Glucose (mg/100 mL) .0066 .0038
Smoking (cigarettes/day) .0069 .0199

Hematocrit (%) .111 .049
Vital capacity (centiliters) -.0098 .0036

Age (years) .0686 .0225

(a) Assess the statistical significance of the individual risk factors and explain the practical implications of
your findings.

Solution: To get the significance levels for each of these risk factors we need to compute the corresponding
Z statistics and either compare them to a critical value or compute the 2-sided p-values. We are given the
values of the coefficients and standard errors so this is easy. For instance, for blood pressure we have

Z =
b1 − 0

sb1

=
.0019
.0070

= .27

For α = .05 the corresponding critical value is our old friend Z.025 = 1.96. Obviously our test statistic is
smaller than the critical value so it does not appear that blood pressure is a significant predictor of sudden
death after accounting for the other risk factors. If we wanted the p-value it would be

2P (Z ≥ .27) = .7871

I give the corresponding Z statistics and p-values for the other variables below:

Risk Factor Z p-value
Blood Pressure (mm Hg) .27 .7871
Weight (% of study mean) -.60 .5485
Cholesterol (mg/100 mL) 1.93 .0536

Glucose (mg/100 mL) 1.74 .0819
Smoking (cigarettes/day) .35 .7623

Hematocrit (%) 2.27 .0235
Vital capacity (centiliters) -2.72 .0065

Age (years) 3.05 .0023

It appears that after adjusting for the other factors the only variables that are significant are hematocrit,
vital capacity and age, although cholesterol and glucose levels are fairly close to significant. Thus these are
the factors that are most important for predicting whether a woman without prior coronary heart disease is
at risk for sudden death.

(b) Give brief interpretations of the age and vital capacity coefficients.

Solution: The age coefficient b8 = .0686 means that after holding all the other factors fixed (weight, smok-
ing status, cholesterol levels, etc.) for every extra year of age the log odds of a woman’s risk of sudden death
goes up by .0686. This is rather hard to interpret since we don’t usually think in terms of log odds. It will
make more sense in part (c) when we look at odds ratios! For the vital capacity coefficient, b7 = −.0098 we
conclude that all else equal, for every extra centiliter of vital capcity, a woman’s log odds of sudden death
goes down by .0098. This is the interpretation of the negative sign. It seems age increases your risk of
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sudden death but having extra vital capacity decreases the risk–hardly a surprise!

(c) Compute the odds ratios relating the additional risk of sudden death associated with (i) a 100-centiliter
decrease in vital capacity and (ii) an additional year of age after adjusting for the other risk factors.

Solution: The odds ratio for a change ∆ in a continuous variable in a logistic regression is given by

ebj∆

I’ll take the age variable first since it is actually simpler. For an increase of 1 year (1 unit) in age, the odds
ratio is

e.0686(1) = 1.07

Thus we conclude that your odds of sudden death get 1.07 times higher for each additional year of age, or
increase by 7% per year.

For the the 100 centiliter decrease in vital capcity our change is ∆ = −100 so our odds ratio is

e(−.0098)(−100) = e.98 = 2.66

Thus losing 100 centiliters of vital capcity increases your odds of sudden death by a factor of 2.66! This is
a big change.

(d) Provide 95% confidence intervals for the odds ratios in part (c)

Solution: Confidence intervals for the odds ratio for a continuous variable are given by

[e(bj−Zα/2se(bj))∆, e(bj+Zα/2se(bj))∆]

For 95% confidence intervals Zα/2 = 1.96. Plugging in the coefficients and standard errors we get for the
age variable

[e(.0686−(1.96)(.0225))(1), e(.0686+(1.96)(.0225))(1)] = [1.025, 1.119]

We note that the odds ratio is entirely above 1 meaning that we can be 95% (really 97.5%) sure a woman’s
odds of sudden death increase with increasing age.
For the vital capacity variable we have

[e(−.0098−(1.96)(.0036))(−100), e(−.0098+(1.96)(.0036))(−100)] = [1.316, 5.396]

(e) Predict the probability of sudden death for a 50 year old woman with systolic blood pressure of 120
mmHg, a relative weight of 100% a cholesterol level of 250 mg/100mL, a glucose level of 100 mg/100mL, a
hematocrit of 40%, and a vital capacity of 450 centiliters who smokes 10 cigarettes per day. (Note that these
numbers are near average for a healthy woman except for the cholesterol level which is high, and of course
the number of cigarettes smoked.)

Solution: Plugging in the given values will give us the log odds of sudden death for such a woman:

ln(Odds) = −15.3+.0019(120)−.006(100)+.0056(250)+.0066(100)+.0069(10)+.111(40)−.0098(450)+.0686(50) = −10.083

To get the actual probability of sudden dealth we note that
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P (Y = 1) =
eln(ODDS)

1 + eln(ODDS)
=

e−10.083

1 + e−10.083
= .00004178

This probability is very low which should not be surprising since the risk of sudden death should be small
in women with no previous coronary heart disease. None-the-less this number is higher than what we would
get if the woman had lower cholesterol or did not smoke.

(3) Ear Infections (Based on Rosner 13.66): In this problem we assess the impact of two different
antibiotics on the chances a child will be cured of an ear infection after adjusting for agd and whether one
or both ears were infected. The variables are “Clear”–whether the infection has been cleared from both ears
after 14 days treatment, “Antibiotic”–the treatment type (1 = Ceftriaxone, 0 = Amoxicillin), Age (categories
under two years old, 2-5 years old and 6 year or older), and “NumEars”–the number of ears infected (either
1 or 2). STATA outputs for the pertinent logistic regression model are below. There are two versions, logit
which gives the raw coefficients and their standard errors and logistic which gives the odds ratios and their
standard errors.

. logit Clear Antibiotic NumEars TwoToFive SixPlus
Logistic regression Number of obs = 203

LR chi2(4) = 21.79
Prob > chi2 = 0.0002

Log likelihood = -129.75295 Pseudo R2 = 0.0775
------------------------------------------------------------------------------

Clear | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Antibiotic | .6692876 .3008256 2.22 0.026 .0796802 1.258895

NumEars | .0439546 .321911 0.14 0.891 -.5869793 .6748885
TwoToFive | 1.148698 .3715113 3.09 0.002 .4205494 1.876847
SixPlus | 1.65964 .4421503 3.75 0.000 .7930418 2.526239
_cons | -1.417179 .6001296 -2.36 0.018 -2.593411 -.2409466

------------------------------------------------------------------------------

. logistic Clear Antibiotic NumEars TwoToFive SixPlus
Logistic regression Number of obs = 203

LR chi2(4) = 21.79
Prob > chi2 = 0.0002

Log likelihood = -129.75295 Pseudo R2 = 0.0775
------------------------------------------------------------------------------

Clear | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Antibiotic | 1.952846 .587466 2.22 0.026 1.082941 3.521528

NumEars | 1.044935 .336376 0.14 0.891 .5560043 1.963814
TwoToFive | 3.154084 1.171778 3.09 0.002 1.522798 6.532873
SixPlus | 5.25742 2.32457 3.75 0.000 2.210109 12.50638

------------------------------------------------------------------------------

(a) Overall do these variables help explain how likely a child is to have their ear infections cleared in 14
days? Briefly justify your answer.

Solution: In a logistic regression the likelihood ratio chi-squared test (labeled LR chi2 in STATA) is the
equivalent of the overall F test. Here the corresponding p-value is .0002, highly significant, so it seems at
least one of antibiotic type, age, and number of ears infected affects how likely a child is to have their ear
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infection resolved within 14 days.

(b) Do these variables explain a lot the “variability” in how likely an ear infection is to clear? Explain
briefly. What are the practical implications of this statement for treating ear infections in small children
with antibiotics?

Solution: In logistic regression the pseudo R-squared plays the role of R-squared and R-squared adjusted
in linear regression although you should be cautious in interpreting it as a percentage of variability-it is
better jsut to think of it as an index between 0 and 1 assessing model performance with 1 being good.
Here the pseudo R-squared is .0775 which is very weak suggesting that the type of antibiotic used is not
a very important determinant of the outcome–there must be many other factors we need to know. In fact
scientists believe that children with ear infections are treated much too often with antibiotics and that the
ear infections would frquently resolve on their own. We can not tell this from our data though as we have
no controls who were not given an antibiotic.

(c) Describe what you think would happen if you used backwards stepwise selection to find the best model
for predicting whether a child’s ear-infection would clear. That is, say what variables would be included in
the intial model, what would happen at each step, and what you think the final model would be, and what
you would have to do to verify your answer.

Solution: Backwards stepwise model selection works by first fitting the model with all the predictors and
the removing the least significant one until all remaining variables are significant. Here we would start with
the model given in the problem statement. The only variable that is not significant is number of ears with
a p-value of .891. Thus we would remove it from the model first. Most likely after we do that we will
be finished because all the other variables are currently highly significant. However, we have to verify this
because the current p-values for the other variables assume the presence of number of ears in the model and
they could change. The printout for the model with number of ears removed is below for reference through
obviously you couldn’t do this during an exam. All the remaining variables are indeed significant so this is
indeed our final model.

. logit Clear Antibiotic TwoToFive SixPlus

Iteration 0: log likelihood = -140.6473
Iteration 1: log likelihood = -129.8349
Iteration 2: log likelihood = -129.76231
Iteration 3: log likelihood = -129.76228

Logistic regression Number of obs = 203
LR chi2(3) = 21.77
Prob > chi2 = 0.0001

Log likelihood = -129.76228 Pseudo R2 = 0.0774

------------------------------------------------------------------------------
Clear | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
Antibiotic | .6735338 .2992697 2.25 0.024 .086976 1.260092
TwoToFive | 1.13779 .362597 3.14 0.002 .4271126 1.848467
SixPlus | 1.645481 .4296477 3.83 0.000 .8033871 2.487575
_cons | -1.350623 .3487325 -3.87 0.000 -2.034126 -.6671198

------------------------------------------------------------------------------
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(d) Explain briefly how you could figure out what variable to add first in a forwards stepwise model selection
procedure for this data.

Solution: In forward stepwise you start with no variables in the model and at each step add the next most
useful variable until there is nothing that would be significant when added. In the first stage you have to look
at all 1 variable models and see which has the best p-value etc. The way I have set the variables up it seems
as if there are four predictors (antibiotic, number of ears, age 2-3 and age 6+). However the indicators for
age range are really a group and so you can argue should really be entered together. Note that if you enter
one but not the other you are comparing the indicate group to the other TWO groups since one indicator
will not differentiate all three groups. Below I have fit the single variable models and the one with both
age range variables. It appears that age is the best variable to add first. If you look at the combined age
variables the overall p-value is .0002. If you add the indicators sequentially it seems that whether or not
you are over 6 is the more important question (corresponding p-value about .01–do note that the overall
p-value and the p-value for the individual predictor are NOT exactly the same here which is different from
in SLR.) Note that I could also have used contingency table analyses to assess the relationship of any of
these variables to whether or not the infection clears!

. logit Clear Antibiotic

Logistic regression Number of obs = 203
LR chi2(1) = 4.23
Prob > chi2 = 0.0396

Log likelihood = -138.53076 Pseudo R2 = 0.0150

------------------------------------------------------------------------------
Clear | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
Antibiotic | .5815617 .2841999 2.05 0.041 .02454 1.138583

_cons | -.3541718 .2062616 -1.72 0.086 -.7584371 .0500935

. logit Clear NumEars

Logistic regression Number of obs = 203
LR chi2(1) = 0.56
Prob > chi2 = 0.4533

Log likelihood = -140.36611 Pseudo R2 = 0.0020

------------------------------------------------------------------------------
Clear | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
NumEars | -.2184641 .2916499 -0.75 0.454 -.7900873 .3531591
_cons | .2497166 .422886 0.59 0.555 -.5791246 1.078558

------------------------------------------------------------------------------

. logit Clear TwoToFive

Logistic regression Number of obs = 203
LR chi2(1) = 1.74
Prob > chi2 = 0.1867

Log likelihood = -139.77538 Pseudo R2 = 0.0062
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------------------------------------------------------------------------------
Clear | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
TwoToFive | .3719711 .2822742 1.32 0.188 -.1812762 .9252184

_cons | -.2273898 .1955141 -1.16 0.245 -.6105904 .1558107
------------------------------------------------------------------------------

. logit Clear SixPlus

Logistic regression Number of obs = 203
LR chi2(1) = 6.36
Prob > chi2 = 0.0117

Log likelihood = -137.46978 Pseudo R2 = 0.0226

------------------------------------------------------------------------------
Clear | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
SixPlus | .8471743 .3424626 2.47 0.013 .1759599 1.518389
_cons | -.2464004 .1618646 -1.52 0.128 -.5636491 .0708483

------------------------------------------------------------------------------

. logit Clear TwoToFive SixPlus

Logistic regression Number of obs = 203
LR chi2(2) = 16.61
Prob > chi2 = 0.0002

Log likelihood = -132.34405 Pseudo R2 = 0.0590

------------------------------------------------------------------------------
Clear | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
TwoToFive | 1.109662 .3574388 3.10 0.002 .4090949 1.810229
SixPlus | 1.565855 .4211782 3.72 0.000 .7403606 2.391349
_cons | -.9650809 .2937848 -3.28 0.001 -1.540889 -.3892732

------------------------------------------------------------------------------

(e) Which of the age categories have I used as the reference in this model?

Solution: I have used the “under 2” age category as my reference. Indicators for the other two groups
appear in the printout for my logistic regression.

(f) Give brief interpretations of the odds ratios for the “Antibiotic” and “TwoToFive” Variables and show
how you would compute them from the information given in the first (logit) printout.

Solution: The odds ratio for the “antibiotic variable” is 1.95 meaning that after controlling for age and
number of ears infected, children getting ceftriaxone (the group coded 1) have odds in favor of their infection
clearing in 14 days of nearly twice that as children treated with amoxocillin (the reference antibiotic). This
interpretation is straightforward because we are dealing with an indicator variable. Similarly, the odds ratio
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of 3.15 for the “2 to 5” age group means that after controlling for antibiotic type and number of ears infected,
children 2-5 years old have odds in favor of their infections clearing of over 3 rimes as great. This seems like
a big improvement. To get these odds ratios we simply take the regression coefficients from the first printout
and exponentiate them:

For the antibiotic variable

eb1 = e.669 = 1.95

For the “2 to 5” age variable

eb1 = e1.14 = 3.15

(g) Verify the calculation of the confidence interval for the coefficient of the SixPlus coefficient in the first
model and show how to convert it into the confidence interval for the odds ratio given in the second printout.

Solution: In logistic regression we use the normal distribution. For a 95% confidence interval we want
Z.025 = 1.96. Thus the confidence interval for the “6 plus” age group is just b4 ± Zα/2sb4 = 1.66 ±
(1.96)(.442) = [.793, 2.536]. Since this is an indicator variable, the confidence interval for the odds ratio is
obtained by exponentiating the confidence interval for the logistic regression coefficient:

[e.793, e2.526] = [2.21, 12.51]

(h) According to this model is their a difference in efficacy between Ceftriaxone and Amoxicillin? Write out
the details of the appropriate hypothesis test using α = .05 (hypotheses mathematically and in words, test
statistic, p-value, conclusions.) Does our model show whether either antibiotic helps cure ear infections?
Explain briefly.

Solution:We need to test whether the coefficient of the Antibiotic variable is significantly different from 0,
namely

β1 = 0–When age and number of ears infected have been adjusted for there is no difference in efficacy
between the two antibiotics.
β1 6= 0–Even age and number of ears infected have been adjusted for there is a significant difference between
the two antibiotics.

Our test statistic is

Zobs =
b1 − 0

sb1

=
.669
.301

= 2.22

And the corresponding 2-sided p-value is

2P (Z ≥ 2.22) = 2(.5− .4868) = 2(.0132) = .0264

Since this p-value is snaller than α− .05 we reject the null hypothesis and conclude that there is a difference
between the two medications even after adjusting for age and number of ears infected. Specifically, as we
saw in part (d) it looks as if ceftriaxone does better than amoxicillin. However technically since we have no
control group and we don’t even know whether the study was randomized we can not tell whether either
medication increases the chance of the ear infection resolving–all we can say is that children on ceftriaxone
did better than those on amoxicillin.
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(i) According to this model does whether one or both of a child’s ears are infected affect their chance of being
cured within 14 days using α = .05? You do not need to write out the details. Just briefly jsutify your answer.

Solution: The p-value for the “number of ears infected” variable is an enormous .893. Therefore, after
adjusting for age and antibiotic, there is no evidence to suggest that it matters how many ears are infected
in determining how likely the infection(s) are to resolve within 14 days.

(j) After adjusting for the other factors, does age impact the likelihood of an infection clearing within 14
days? Explain briefly using α = .05.

Solution: On the other hand, it appears that age does have an impact in determining how likely the infection
is to clear. The p-values for both age group indicators are significant (,002 for “2 to 5” and .000 for “6 plus”.)
In fact, since the coefficients for these variables are positive and that of “6 plus” is higher than “2 to 5” it
seems the older the child is the more likely the infection is to resolve within 14 days, all else equal. However....

(k) Is there a difference in likelihood of cure between children who are 2-5 and children 6 or older? Explain
briefly. (Note: I did not refit the model with a different reference group for age–the information you need to
get at least an approximate answer is on the printout.)

Solution: If we look at the confidence intervals for the these two age group indicators comparing them to
the reference “under 2” group they strongly overlap. This means we can not be sure there is a difference
between the “2 to 5” and “6 plus” groups. It seems that what we can be sure of is that being an infant
under 2 means your odds of having your infection clear quickly is lower. To be sure about this conclusion we
actually would need to refit since the comparison of the itnervals is conservative. However here the overlap
is strong enough that the answer is unlikely to change....

(4) Special Delivery: In the developed world most people with HIV receive some form of “highly active
antiretroviral therapy” or HAART. (HAART regimens are basically cocktails of multiple drugs that are more
effective because the virus is less likely to become resistant in their presence.) However in underdeveloped
nations HAART is rarer because of its cost. Professor Helpful believes that HAART regimens will help
reduce the risk of HIV positive pregnant women passing on the infection to their babies and must therefore
be agressively promoted in poor countries. He has followed n=300 HIV positive pregant women, 100 of
whom are receiving at most a basic non-HAART treatment, 100 of whom are taking HAART regimen A,
and 100 of whom are taking HAART regimen B. (I’ll skip the drug names to keep this simple!) He records
Y, whether or not the baby is HIV positive (1 = yes, 0 = no) and which treatment regimen the mother was
on (X1 = 1 if the mother was on HAART A and 0 otherwise, X2 = 1 if mother was on HAART B and
0 otherwise), and fits a logistic regression. The corresponding STATA printouts are below. Use them to
answer the following questions.

. logit HIVplus HAART_A HAART_B

Logistic regression Number of obs = 300
LR chi2(2) = 6.75
Prob > chi2 = 0.0342

Log likelihood = -96.32681 Pseudo R2 = 0.0339

------------------------------------------------------------------------------
HIVplus | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
HAART_A | -0.539 .431 -1.25 0.211 -1.383 0.305
HAART_B | -1.286 .534 -2.41 0.016 -2.332 -0.240
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_cons | -1.658 .273 -6.08 0.000 -2.193 -1.124
------------------------------------------------------------------------------

. logistic HIVplus HAART_A HAART_B

Logistic regression Number of obs = 300
LR chi2(2) = 6.75
Prob > chi2 = 0.0342

Log likelihood = -96.32681 Pseudo R2 = 0.0339

------------------------------------------------------------------------------
hivplus | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
HAART_A | .583 .251 -1.25 0.211 .251 1.357
HAART_B | .276 .147 -2.41 0.016 .097 0.787

------------------------------------------------------------------------------

(a) Overall, is treatment regimen useful for explaining whether a woman passes on HIV infection to her
baby? Write down the mathematical hypotheses you are testing, circle the relevant p-value on one of the
printouts and give your real-world conclusions using α = .05. You do NOT need to provide any other details.

Solution: The equivalent of the overall F test for logistic regression is the likelihood ratio chi-squared test.
The hypotheses are just like the F test:

H0 : β1 = β2 = 0-What treatment the mother receives (X1 and X2) is not useful for explaining the risk that
the mother transmits HIV to her baby. There is no difference in risk among any of the groups.
HA : At least one of β1, β2 is non 0; at least one of the treatment group variables is useful for explaining
risk. There is a difference in risk among the non-HAART, HAART A and HAART B regimens.

The test statistic is χ2 = 6.75 and the corresponding p-value is .0342. Since this is less than α = .05 we
reject the null hypothesis and conclude that risk of transmission does differ by treatment group. This model
does overall help to explain how likely a mother is to transmit HIV to her baby. Note that per the problem
statement all you needed were the math hypotheses, the p-value and the conclusions. You did not need to
write out the word hypotheses or test statistic but I included them as a study aid since I certainly could ask
for them!

(b) Give a brief interpretation of the odds ratio for the HAART A variable and show how to compute it
from the first regression printout.

Solution: In a logistic regression, the Odds Ratio for an indicator variable tells you how much higher
(or lower) the odds of an event (Y=1, here mother transmits HIV to infant) are for someone who has the
characteristic of interest (HAART A treatment) than someone who doesn’t (here the reference group, no
HAART), all else equal. An odds ratio of 1 corresponds to equal odds, an odds ratio above 1 means the
odds are higher for the person with the characteristic, and an odds ratio below 1 means the odds are lower
for the person with the characteristic. From the second printout the odds ratio for the HAART A variable
is OR = .583, meaning the odds the mother transmits HIV to her baby are only 58.3% or a little over half
as high for a mother receiving HAART A treatment as for a mother not receiving any HAART treatment.
(Note that here we don’t need the all else equal because a mother can be in only 1 group and there are no
other predictors.) To compute the odds ratio we simply exponentiate the corresponding regression coefficient:
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ORA = eb1 = e−.539 = .583

(c) Do HAART A and HAART B appear to reduce a mother’s risk of passing on HIV to her infant? Explain
briefly using α = .05 and give the p-values corresponding to the tests you are performing. You do NOT need
to write out any other details of the tests.

Solution: Our best estimate is that both HAART A and HAART B reduce the risk of mother to infant
transmission relative to the non-HAART group since the odds ratios for both the group indicators are below
1. However to be sure we need to look at the p-values for the 1-sided tests that β < 0. We get these
p-values by dividing the STATA p-values for the corresponding Z tests in half. The p-value for the HAART
A indicator is ..105, well above .05, meaning we can not be sure that the coefficient for the HAART A
indicator is negative or correspondingly that the odds ratio is significantly below 1. Therefore, we can not
be 95% sure the treatment is associated with reduced risk. The p-value for HAART B on the other hand is
.016/2 = .008, which is below .05 meaning we can be sure the risk in the HAART B group is significantly
lower than in the no-HAART group. Here I specifically asked you to give the p-values. However in gen-
eral you could also answer this sort of question using confidence intervals. There are two ways to do this.
First, we could check whether the confidence intervals for the odds ratios are entirely below 1. If they are
then the risk is lower on the treatments than on the control regimen. Second, we could use the confidence
intervals for the coefficients (on the logit scale) and check whether or not they are entirely below 0. Do
keep in mind however that the confidence intervals are two-sided so it is actually a tougher standard to say
the whole 95% CI has to be below a given value than it is to do a 1-sided test that you are below a given value.

(d) Find the odds ratio comparing the risk of HIV transmission for mothers in the HAART A group com-
pared to those in the HAART B group. Show your work. Based on this estimate which of these treatment
regimens is more effective? Briefly explain your reasoning. Do you think you can be 95% sure this treatment
is better? Explain.

Solution: There are several ways to do this. The easiest way is to note that the odds ratio for HAART
A versus no HAART is ODDSA/ODDSNone and the odds ratio for HAART B versus no HAART is
ODDSB/ODDSNone so if we take the ratio of these odds ratios we get the odds ratio for A vs B:

ORAvsNone

ORBvsNone
=

ODDSA/ODDSNone

ODDSB/ODDSNone
=

ODDSA

ODDSB
= ORAvsB

For these data we get ORAvsB = .583/.276 = 2.11 Since this number is greater than 1, it appears the risk of
transmission is higher in the HAART A group than the HAART B group. Thus the HAART B treatment
appears to work better. However, the confidence intervals for the odds ratios comparing each of HAART
A and HAART B to no HAART overlap with each other. Thus it is possible that the two treatments are
associated with the same improvement in risk relative to no HAART and we can NOT be 95% sure that
HAART B is better.

(5) Prenatal Care-acteristics: Professor Helpful recognizes that there are probably many factors besides
treatment regimen that affect whether a mother transmits HIV to her baby. He has thus added the following
variables to his logistic regression model from Question 4: X3, the mother’s viral load in copies per milliliter
of blood (higher viral load is worse), X4, the mother’s age in years, X5, the number of years the mother
has been HIV positive, X6, the number of weeks during the pregnancy for which the mother was receiving
HAART therapy, and X7 the method by which the baby was delivered (1 = C-section, 0 = natural delivery).
The new printouts are given below. Use them to answer the following questions.

. logit HIVplus HAART_A HAART_B VLoad Age YrsHIV WksHAART Delivery

Logistic regression Number of obs = 300
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LR chi2(7) = 32.47
Prob > chi2 = 0.000

Log likelihood = -26.51722 Pseudo R2 = 0.500
------------------------------------------------------------------------------

HIVplus | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

HAART_A | -0.70 0.250 2.80 0.005 [-1.19, -0.21]
HAART_B | -1.80 0.300 6.00 0.000 [-2.39, -1.21]
VLoad |0.00001 0.0000025 4.00 0.000 [.000005, .000015]
Age | 0.10 0.050 2.00 0.046 [ 0.00, 0.20]

YrsHIV | 0.10 0.080 1.25 0.211 [-0.06, 0.26]
WksHAART | -0.05 0.010 -5.00 0.000 [-0.07, -0.03]
Delivery | -0.40 0.150 -2.67 0.004 [-0.69, -0.11]

_cons | -5.00 0.500 -10.00 0.000 [-5.98, -4.02]
------------------------------------------------------------------------------

. logistic HIVplus HAART_A HAART_B

Logistic regression Number of obs = 300
LR chi2(7) = 32.47
Prob > chi2 = 0.000

Log likelihood = -26.51722 Pseudo R2 = 0.500
------------------------------------------------------------------------------

HIVplus | OddsRatio z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

HAART_A | 0.4966 2.80 0.005 [0.3042, 0.8106]
HAART_B | 0.1652 6.00 0.000 [0.0916, 0.2982]
VLoad | 1.00001 4.00 0.000 [1.000005, 1.000015]
Age | 1.1052 2.00 0.046 [1.0020, 1.2190]

YrsHIV | 1.1052 1.25 0.211 [0.9448, 1.2928]
WksHAART | 0.9512 -5.00 0.000 [0.9328, 0.9700]
Delivery | 0.6703 -2.67 0.004 [0.4996, 0.8994]

------------------------------------------------------------------------------

(a) Find the probability that a 30 year old women on HAART A for 20 weeks of her pregnancy with a viral
load of 10,000 who has been HIV positive for 10 years will have an HIV negative baby if she delivers by
Cesarean Section. Show your work.

Solution: First note that the model predicts the probability of having an HIV positive baby so once we
get the predicted probabiltiy we will have to subtract it from 1 to get our final answer! The formula for the
predicted probability is

p =
eb0+b1X1+···+bkXk

1 + eb0+b1X1+···+bkXk

It is easiest to first plug in the X values and then do the exponentiation. Since the mother is on HAART
A, X1 = 1 and X2 = 0. Since she delivers by C-section, X7 = 1. All the other numbers are straightforward.
We have

b0 + b1X1 + · · ·+ bkXk = −5− .7(1)− 1.8(0) + .00001(10000) + .1(30) + .1(10)− .05(20)− .4(1) = −3

From this we get the probability as
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p =
e−3

1 + e−3
= .047

Thus the probability that a woman with the given characteristics will have an HIV positive baby is 4.7%
and the chance she will have an HIV negative baby is 95.3%.

(b) Explain as precisely as you can the meaning of the p-value for X7, the delivery variable. Your answer
should be specific to this context and incorporate the relevant numeric value(s).

Solution: The p-value is, in general, the probability of getting data as or more extreme (i.e. as or more
favorable to HA) than what was observed, assuming the null hypothesis is true. Here that translates to
saying that there is only a 4 out of 1000 chance (numerical value of p-value= .004) that we would have seen
such a big difference in HIV transmission rates in our sample between woman who had C-sections version
woman who did not (our data) if really the delivery method was not associated with risk of transmission
after adjusting for the other factors.

(c) (i) Give a brief interpretation of the confidence interval for the odds ratio for X6, the weeks treated
variable. (ii) Find a 95% confidence interval for the odds ratio associated with an extra MONTH (4 weeks)
of HAART treatment. Based on this latter interval can you be sure that, all else equal, an extra month of
HAART treatment will reduce the risk of mother to child transmission by 10%.

Solution: (i) The CI for the odds ratio of the weeks treated variable is [0.9328, 0.9700] which says that
your odds of having an HIV positive baby with x+1 weeks of HAART treatment are between 93.28%-97%
as high as they would be with only x weeks of HAART treatment. A more natural way to say this is that
each additional week of HAART treatment is associated with a decrease of between 3% to 6.72% in the odds
of HIV transmission, all else equal. Since this interval is entirely below 1, we are 95% sure that additional
time on HAART is associated with a LOWER risk of transmission.

(ii) There are several ways to approach this problem. We are talking now about a 4 unit change in X6 so we
can either multiply the confidence interval for β6 by 4 to get the change in log odds associated with an extra
month of HAART and then exponentiate to get the corresponding CI for the odds ratio, or we can take the
current interval for the odds ratio and raise the ends to the 4th power since multiplication on the log odds
scale is exponentiation on the odds ratio schedule. Using the first approach, the CI for the change in log
odds corresponding to 4 extra weeks of HAART is [−0.07,−0.03] ∗ 4 = [−0.28,−0.12]. Exponentiating this
gives us [e−.28, e−.12] = [.76, .89]. We get the same thing (up to rounding) from raising the current interval
for the odds ratio to the 4th power: [(.9328)4, (.97)4] = [.76, .89]. This says that each additional month of
HAART treatment is associated with between an 11% to 24% reduction in the odds. Or if you prefer the
odds for a woman with an extra month of HAART are only .76 to .89 as high. Even in the worst case there
is at least an 11% reduction in the odds so it looks like we can make the desired claim that an extra month
of HAART decreases the odds of transmission by at least 10%.

(d) Professor Helpful believes overfitting is an issue in this model. (i) Explain why he is correct. (ii) Give
a possible real-world cause of the overfitting and say how you would check whether your idea was correct.
(iii) Say what variable you would remove first in a backwards stepwise procedure and why. (iv) What do
you think would happen to the pseudo R2 if you removed this variable? Why?

Solution: (i) Overfitting means including variables in your model that are not useful. Here the years of HIV
variable has a p-value of .211 meaning it is not statistically significant and not worth including the model
once we have taken all the other factors into account. (ii) It seems likely that how long the person has had
HIV is strongly correlated with their age and their viral load (which measures how sick they are). Thus there
is probably an issue of multicollinearity. We could check this by looking at the correlations among the three
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variables. (iii) Since years of HIV is the only variable with a non-significant p-value it would be the first
thing to be removed in a backwards stepwise procedure. (iv) This actually depends on whether or not the
pseudo R-squared used by STATA is an adjusted R-squared that takes degrees of freedom into account. If it
is, then my reducing the overfitting the R-squared value might actually go up a little. If it is an unadjsuted
value then it would get slightly smaller or stay the same. It can’t change very much since the years of HIV
variable is not significant and therefore not explaining much of the variability in the outcome. Therefore
taking it out can cause very little reduction in our estimate of how much we have explained.

(6) Sports Fanatics: My husband, Gareth, is from New Zealand where the national sports passion is
rugby (sort of like American football only better!) The national rugby team is called the All Blacks (they
wear black) and their main rivals are Australia (the Wallabies) and South Africa (the Springboks). Gareth
realizes that what he really cares about is whether the All Blackswin or not. Therefore he decides to perform
a logistic regression with the the response variable, Y, being whether or not the All Blacks win (Y = 1 if
they win and 0 if they lose). The predictors are

AB Win%=the percent of the previous ten games that the All Blacks had won going into the game in ques-
tion, ranging from 0 to 100

OppWin%, (same definition for the opponents last 10 games)

Home?, an indicator variable with 1 corresponding to an All Blacks home game and 0 an away game

Temperature (the temperature at which the game was played.)

Australia? (a dummy variable with 1 corresponding to a game against archrival Australia and 0 a game
against another team.)

Below are the p-value for the likelihood ratio chi-square test along with a table of coefficients, standard
errors, Z scores and p-values for the various variables. Use them to answer the questions below.

LR chi2 p-Value < 0.0001

Coef SE Z p-value
Constant -25.30 10.54 -2.40 0.0163
AB Win % 0.466 0.176 2.65 0.0082
Opp Win % -0.170 0.643 -2.65 0.0081
Home? 1.45 0.660 2.20 0.0278
Temperature 0.115 0.045 2.55 0.0108
Australia? -0.245 1.890 -0.13 0.8969

(a) Is there evidence that at least one of the variables is a statistically significant predictor of whether the
All Blacks win? Justify your answer.

Solution: Yes, the p-value for the likelihood ratio chi-squared test is very small (¡0.0001). This indicates that
we can reject the null hypothesis that none of the variables are helping to predict wins. At least one variable
is a significant predictor. Mathematically our hypotheses would have been H0 : β1 = β2 = β3 = β4 = β5 = 0
versus HA : At least one β 6= 0.

(b) What does the coefficient for Temperature tell us about the relationship between Temperature and the
probability that the All Blacks win? Compute the corresponding odds ratio for a 10 degree increase in
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temperature and explain what it means. Give a confidence interval for this odds ratio.

Solution: The coefficient for temperature is positive. Hence, holding all other variables fixed, on warmer
days the All Blacks are more likely to win than on colder days. More specifically, the log odds of an All
Blacks victory goes up .115 per degree increase in temperature. These units are hard to understand so we
can convert the value to an odds ratio by exponentiating. I didn’t ask for this but will include it anyway.
We get

ÔRtemp = e.115 = 1.12

This means that all else equal the odds of the All Blacks winning go up by a factor of 1.12 for each degree
of temperature or 12% per degree. Since this value is above 1, higher temperatures favor the All Blacks.
Note that we could also get a confidence interval for this odds ratio by getting a confidence interval for the
coefficient and then exponentiating it.

The second part of the question asked for an odds ratio for a temperature jump of 10 degrees. Temperature
is a continuous variable so we are talking about a delta of 10 degrees or ∆ = 10. The odds ratio for a numeric
variable corresponding to a change delta is

ÔR∆ = eb∗∆ = e.115∗10 = e1.15 = 3.16

Thus the odds of winning are 3.16 times higher if the temperature is 10 degrees hotter. You can verify that
this is the same answer we get by raising the odds ratio for the one degree range to the power 10. If we
wanted a confidence interval for this odds ratio we use the formula

[e(b−Zα/2sb)∆, e(b+Zα/2sb)∆]

Here we have b = .115, Z = 1.96 for a 95% confidence interval, sb = .045 and ∆ = 10. Plugging these
numbers in gives a CI of [1.307, 7.629]. Thus the odds of winning are somewhere between 1.307 and 7.629
times as high if the temperature goes up 10 degrees, all else being equal.

(c) Which variables are statistically significant? Justify your answer. Do the signs of the various coefficients
make sense?

Solution: AB Win% (p-value 0.0082), Opp Win% (p-value 0.0081), Home? (p-value 0.0278) and Tempera-
ture (p-value 0.0108) are all statistically significant variables because they have low p-values. The Australia
indicator is not significant because it’s p-value is above α = .05. Note that we could have found these
p-values using the Z table if they had not been given to us! As far as the signs, the better the All Blacks
have been playing the more likely they are to keep winning so the positive sign on AB Win% makes sense.
However if the All Black’s oppoent has been playing well it will be a harder game so the chances of winning
will go down. Thus the negative sign on Opp Win% makes sense. Similarly home field is an advantage so
we would expect the Home? coefficient to be positive as it is. New Zealand is a warm country so it is not
surprising the All Blacks play better in warmer weather as suggested by the positive sign on the temperature
variable. The All Black’s archrival Australia is the 2nd best team in the world (compared to the All Black’s
of course!) so games agains them are harder and we would expect a negative coefficient. The fact that this
isn’t significant indicates just how good the All Blacks are! Of course I wouldn’t expect you to know these
extra rugby facts for our final!

(d) Estimate the probability of the New Zealand All Blacks winning a game against South Africa played in
South Africa at 50 degree temperatures where both teams have a winning percentage of 70.

Solution: The formula is
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p =
eb0+b1X1+...+b5X5

1 + eb0+b1X1+...+b5X5
=

e−25.3+.466(70)−.170(70)+1.45(0)+.115(50)−.245(0)

1 + e−25.3+.466(70)−.170(70)+1.45(0)+.115(50)−.245(0)
= .763

The All Black’s chances of winning the game are quite good!

(e) Find a confidence interval for the coefficient of the Home? variable and give a brief interpretation. Also
find the odds ratio for the corresponding variable and a 95% confidence interval and interpret those results.

Solution: The CI is just b3 ± Zα/2sb3 = 1.45 ± (1.96)(.66) = [.1564, 2.7436]. The log odds of winning is
between ,1564 and 2.7436 higher when the game is at home than when it is away, all else equal. Since the
whole CI is above 0 we are 95% sure that the All Blacks are more likely to win a home game than an away
game, all else equal. To convert this to a CI for the odds ratio we expoentiate. The OR CI is [1.17, 15.54].
This means our odds of winning a home game are 1.17 to 15.54 times as high as for an away game all else
equal. Since this whole CI is above 1 again we conclude that a home game is an advantage all else equal.

(f) The coefficient for the Home? variable seems to indicate that the All Blacks are more likely to win at
home than on the road. However, somewhat surprisingly, the All Blacks turn out to win more games on the
road than at home. One of my husbands MBA students (from that school on the wrong side of town) looks
at these results and states that this indicates that there must be some mistake in the analysis. However, you
tell them that in fact this apparent inconsistency is entirely possible even if the model is correct. Assuming
that the model is correct (i.e. there are no important variables missing from the model or violations of the
basic assumptions etc.) and the coefficient estimates are exactly correct how could the coefficient for Home?
be positive even though the All Blacks win more games on the road?

Solution: There are at least a couple of possible explanations for this effect. The key here is that the Home?
coefficient being positive only tells us that if all the other variables are the same then the All Blacks are
more likely to win at home than on the road. However, the other variables may not all be the same. For
example, suppose that the All Blacks always play better teams (as measured by Opp Win %) at home and
worse teams on the road. Then this might negate the otherwise positive effect of being at home. Another
possibility is temperature. Suppose that the All Blacks home games tend to be colder than their away games.
Then, since they prefer playing in warmer temperatures, they could well end up winning more games on the
road. This is the sort of reason why it can be critical to adjust for possible confounders in a regression model!

Regression/ANOVA Problems

For regression some of the best practice problems are the warm-up problems from homework 5 and 6. You
can also take the regression printouts from the midterm 1 practice set and use them to think about the
topics we have covered more recently. I have included below an extension about one of those problems which
I had previously included only in ANOVA form and added some regression parts. This is the problem as
it originally appeared in an exam. I’ve also taken a problem from the Midterm 1 practice that had a good
example of an outlier and added some additional parts to it. Let me know if after going through all those
options there is anything on which you feel short of practice....

(1) Analysis of Varying Medications: A researcer is analyzing methods of reducing cholesterol levels.
She is interested in the relative merits of diets versus cholesterol lowering medications. For each of 65 subjects
who began the study with high cholesterol she records total blood cholesterol level (in mg per deciliter) after
6 months participation in the study. The patients are divided into G=5 groups: a control group (C) which
receives a placebo, a vegetarian diet group (V), a low fat diet group (LF), a low dose medication group
(LD) and a high dose medication group (HD). STATA printouts below show the group means, standard
deviations, and group sizes, along with an ANOVA table which seems to be missing a few numbers. Use this
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information to answer the questions on the following pages.

. oneway Cholesterol Group, tabulate

| Summary of Cholesterol
|

Group | Mean Std. Dev. Freq.
------------+------------------------------------

C | 240 1.22 25
V | 225 1.18 10
LF | 230 1.10 10
LD | 215 1.02 10
HD | 200 1.11 10

------------+------------------------------------
Total | 226.2 13.51 65

Analysis of Variance
Source SS df MS F Prob > F

------------------------------------------------------------------------
Between groups _6881.4_ _4_ _1720.4 _21.5_ 0.000
Within groups _4800_ 60 80.00
------------------------------------------------------------------------

Total 11681.4 _64_

(a) Fill in the missing entries (marked ) in the above tables. You do not need to give your reasoning
though it may help if you make mistakes. There is an easy way and a hard way to do this! Try to do it the
easy way! Note that you will be able to do the rest of the problem even if you can not do part (a).

Solution: The filled in table is above. The degrees of freedom between is the number of groups minus 1,
here G-1 = 5-1 =4. The degrees of freedom total are n-1 = 64 in this case. To get the rest, just use the fact
that mean squares are sums of squares divided by degrees of freedom so SSW = MSW*df = 80*60 = 4800.
Then note that the sums of squares must add so SSB = SST - SSW = 6881.4. This gives MSB = 6881.4/4
= 1720.4. Finally F = MSB/MSW =21.5.

(b) Based on this data is there evidence that any of the group means are different from each other? Jus-
tify your answer by performing an appropriate hypothesis test. Be sure to state the null and alternative
hypotheses, both mathematically and in words, give the p-value, and your real-world conclusions.

Solution: We are asked to do an overall F test. In an ANOVA our hypotheses are:

H0 : µC = µV = µLF = µLD = µHD–all the groups have the same average cholesterol level–the diets and
medications have no impact.
HA : The µ’s are not all equal–at least two of the means are different from each other–which here would
imply at least one of the diets or drugs has an effect (or at least differes from one of the other treatments).

The p-value corresponding to the F statistic is 0 so at α = .05 we reject the null hypothesis and conclude
that at least one of the groups as a mean that is not the same as the others.

(c) Suppose that instead of doing an ANOVA we had fit a regresison model to this data using the vegetar-
ian diet group as the reference group. Write down the estimated regression equation we would have obtained.
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Solution: In an ANOVA setting the intercept represents the mean of the reference group and the other
coefficients represent the difference between a particular group and the reference group. Here we are asked
to use the vegatarian diet as the reference, so b0 = 225. The difference between the control and vegetarian
groups is 240-225 = 15 so we would have bc = 15. Similarly, bLF = 230 − 225 = 5, bLD = 215 − 225 =
−10, bHD = 200− 225 = −25. Note that the minus signs for the latter two groups mean that those groups
have LOWER cholesterol levels than the people on the vegetarian diet. Our equation is thus

Ŷ = 225 + 15XC + 5XLF − 10XLD − 25XHD

(d) What percentage of the variability in cholesterol levels is explained by the treatment group to which a
subject belonged? Show your calculations or explain your reasoning.

Solution: We are being asked for R2 which is just SSB/SST in an ANOVA. Here we get SSB/SST =
6881.4/11681.4 = .589 or a little under 60% of the variability is explained by treatment. This is pretty high
considering how many things can affect a person’s cholesterol level!

Below is a table showing test statistics and p-values for pairwise comparisons of the different group means
for this ANOVA. Use it to help answer parts (e)-(f).

Pair tobs p-value Pair tobs p-value
C vs V 4.48 .00003 C vs LF 2.99 .00404
C vs LD 7.47 .00000 C vs HD 11.95 .00000
V vs LF V vs LD 2.50 .01517
V vs HD 6.25 .00000 LF vs LD 3.75 .00040
LF vs HD 7.50 .00000 LD vs HD 3.75 .00040

(e) The test comparing the vegetarian diet group to the low fat diet group is missing. State the null and
alternative hypotheses mathematically and in words, compute the test statistic and an approximate p-value
and explain your real-world conclusions. (Note: Make sure you carefully show your calculation of the stan-
dard error.)

Solution: Our hypotheses are

H0 : µV = µLF or µV − µLF = 0–the mean cholesterol level of people on the two diets is the same
HZ : µV 6= µLF or µV − µLF 6= 0–the cholesterol levels of people in the two diet groups are different.

The standard error of the difference in means is

se =
√

MSW (
1

nV
+

1
nLF

) =

√
80(

1
10

+
1
10

) =
√

16 = 4

Our test statistic is therefore

tobs =
ȲV − ȲLF − 0√

MSW ( 1
nV

+ 1
nLF

)
=

225− 230
4

= −1.25

Under the null hypothesis this test statistic has a t distrobution with n-G = 60 degrees of freedom. Looking
in the row on the t-table for 60 degrees of freedom we see that t.85 = 1.046 and t.90 = 1.296. Thus the
one-sided p-value would be between .1 and .15 and the corresponding 2-sided p-value would be between .2
and .3. This is a very large p-value so we fail to reject the null hypothesis. We do not have sufficient evidence
to show a difference in cholesterol levels between the two diet groups.
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(f) Which pairs of means are significantly different from one another at the α = .05 level without adjusting
for multiple testing? Explain briefly.

Solution: Looking at the table, all the p-values are less than .05 except for the one we just calculated for
the vegetarian versus low fat diet. Thus all the groups are significantly different except the two diets if we
don’t adjust for multiple testing.

(g) According to the Bonferroni method, what significance level should you use for the individual tests for
differences of means to get an overall significance level of α = .05? Explain briefly. Use your answer to
repeat part (f), adjusting for multiple comparisons. Indicate any results that have changed.

Solution: The Bonferroni method says that significance level to use for individual tests is the overall de-
sired significance level α divided by the number of tests. Here we have 5 choose 2 = 10 tests (either use the
binomial coefficient or just count the number of pairs in the table) and our overall significance level is meant
to be α = .05 so for the individual tests we should use α∗ = .005. Looking at the table we see that the test
for the vegetarian diet versus the low dose medication has a p-value greater than .005 so we now cannot
conclude these two treatments differ. Otherwise all the results remain the same. In summary we can not
be sure the vegetarian diet differs from either the low dose medication or the low fat diet but all the other
means are significantly different from one another even after adjusting for multiple testing.

(h) The researcher is interested in comparing the average cholesterol level of people in the two diet groups
with that of the people in the low dose medication group. Write down an appropriate linear combination,
L, for the comparison she wishes to do. Give your best estimate of L and the corresponding standard error
and use these numbers to find a 95% confidence interval for L. Give a brief interpretation of your interval
and explain whether the researcher can conclude there is a difference in efficacy between diets and the low
dose medication in reducing cholesterol levels.

Solution: This is a linear combination problem. We want to compare µLD with the average of the two diet
groups. Thus the combination of interest is

L = µLD − µV + µLF

2
= µLD − .5µV − .5µLF

Our best estimate of a linear combination of means is simply to plug in the sample means, Ȳ . Thus our
estimate is

L̂ = ȲLD − .5ȲV − .5ȲLF = 215− .5(225)− .5(230) = −12.5

The standard error for a linear combination is

se(L̂) =

√
MSW

∑ c2
j

nj
=

√
80(

12

10
+

(.5)2

10
+

(.5)2

10
) = 3.46

We want a 95% confidence interval and we are working with n-G = 60 degrees of freedom. From the t-
table we see that t60,.025 = 2 Thus our confidence interval is −12.5 ± (2)(3.46) = [−19.42,−5.58]. Thus it
seems that the average cholesterol level in the low dose medication group are between 5.58 and 19.42 mg/dL
LOWER than the average in the two diet groups. Since this interval lies entirely below 0 we can be 95%
(really 97.5%) sure that the patients in the loe dose medication group are doing better than those who are
only using dietary measures to control their cholesterol.

Obviously there are factors other than treatment group which could affect a person’s cholesterol level. Thus,
the researcher has fit a multiple regression of cholesterol level on treatment group, age, weight and whether
or not the person has a family history of coronary artery disease (1 = yes and 0=no). Use the STATA
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multiple regression printout to answer the remaining parts of the question.

. reg Birthweight EX LOW HIGH

Source | SS df MS Number of obs = 65
-------------+------------------------------ F( 7 , 57 ) = 73.3

Model | 10513.3 7 1501.9 Prob > F = 0.000
Residual | 1168.1 57 20.5 R-squared = 0.900

-------------+------------------------------ Adj R-squared = 0.888
Total | 11681.4 64 Root MSE = 4.528

----------------------------------------------------------------------------
Birthweight | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--------------------------------------------------------------

AGE | 0.5 0.2 2.50 0.0153 0.10 0.90
WEIGHT | 0.6 0.2 3.00 0.0040 0.20 1.00
HISTORY | 30.0 5.0 5.00 0.0000 20.00 40.00

VEG | -2.0 1.6 -1.25 0.2164 -5.20 1.20
LOW FAT | 1.0 0.8 1.20 0.2351 -0.60 2.60

LOW DOSE | -5.0 3.0 -1.67 0.1004 -11.00 1.00
HIGH DOSE | -25.0 5.0 -5.00 0.0000 -35.00 -15.00

_cons | 100.0 25.0 4.00 0.0002 50.00 150.00
----------------------------------------------------------------------------

(i) In terms of percentage of variability explained and accuracy of predictions does this model do a better
job than the simple ANOVA from parts (a)-(h)? Explain briefly what numbers from the printout you are
looking at to answer this question and also perform an appropriate hypothesis test. Does this model make
good predictions? Explain.

Solution: In part (d) we found that R2 = .589 for the ANOVA while here we have R2 = .9 and R2
adj = .888.

Clearly adding the additional variables has improved the percentage of variability exlained. For predictions
we must look at the RMSE. For the regression model our average error is RMSE = 4.528. For the ANOVA
RMSE =

√
MSW =

√
80 = 8.94. Thus the predictions from the regression are substantially more accurate.

To tell if the predictions from the regression model are actually good we compare the errors to the Y values
we are trying to predict. We know that normal cholesterol levels are around 200. The grand mean for this
data set (from the table at the start of the problem) is 226.2. Based on either of these numbers we are
making between a little over a 2% error (e.g. 4.58/200 = 2.29%) which seems quite good.

We were also asked to do a formal test to determine whether the new model is better than the old one.
What is needed is a partial F test. We have added three variables, age, weight and family history. Thus our
hypotheses are:

H0 : β1 = β2 = β3 = 0–none of age, weight and family history help explain cholestoral level.
HA : At least one of those β’s is not 0. The model with the extra variables is a significant improvement.
Our test statistic is

F =
(SSRfull − SSRred)/3
SSEfull/(n− 7− 1)

=
(10513.3− 6881.4)/3

1168.1/57
= 59.08

Technically we need an F table or a STATA printout of the partial F test to get the p-value but by now your
intuition should be telling you that this is a huge value and that we will reject the null hypothesis. The new
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model is defintiely an improvement over the one involving only the treatment groups.

(j) After adjusting for age, weight, and family history, does it appear that the diets or medication doses
have a significant impact on cholesterol levels compared to the control group? Briefly justify your answer.

Solution: The indicators for the V, LF, LD, and HD groups compare the cholesterol levels for those groups
to the reference group (here the controls) after adjusting for the other variables. Here the only one of those
variables that is significant at α = .05 is the high dose medication indicator. All the others have p-values
over .1. Thus the only treatment with a significant impact appears to be the high dose medication.

(k) Your answer to part (j) is different from what you found in parts (f) and (g). Explain what has happened
and what it implies about whether the researcher performed a properly randomized study.

Solution: Before ALL the treatments looked like they worked. After adjusting for age, weight and family
history, only one seems to work. This would suggest that there were differences in age, weight or family
history between the different treatment groups–otherwise the adjustment shouldn’t have changed anything.
This is bad because it means that the randomization was not properly done. The whole point of random-
ization is to balance out possible confounding factors so that they do not affect the conclusions about the
treatments. For instance, here, maybe more overweight people ended up in the control group, making it look
worse than it really was. Or more young people ended up in the diet groups making them look better than
they really were, etc.

(2) Leaping Into the Future: In the modern Olympic era, performances in track and field have been
steadily improving. The table below gives the winning distance (in inches) for the Olympic long jump from
1952 to 1984. Below is a regression printout for a simple regression of distance on year. Use the printout to
answer the following questions.

Year Distance
1952 298
1956 308.25
1960 319.75
1964 317.75
1968 350.5
1972 324.5
1976 328.5
1980 336.25
1984 336.25

Scatterplot

-
Distance- x

-
-

340+
- x x
-
- x
- x
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320+ x
- x
-
- x
-

300+ x
-
-

--------+---------+---------+---------+---------+--------Year
1956.0 1962.0 1968.0 1974.0 1980.0

Regression Analysis

. reg Distance Year

Source | SS df MS Number of obs = 9
-------------+------------------------------ F( 1, 7) = 9.21

Model | 1137.52604 1 1137.52604 Prob > F = 0.0190
Residual | 864.973958 7 123.567708 R-squared = 0.5681

-------------+------------------------------ Adj R-squared = 0.5063
Total | 2002.5 8 250.3125 Root MSE = 11.116

------------------------------------------------------------------------------
Distance | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
Year | 1.088542 .3587706 3.03 0.019 .2401839 1.936899

_cons | -1817.833 706.0703 -2.57 0.037 -3487.424 -148.2423
------------------------------------------------------------------------------

. reg Distance Year Yearsq

Source | SS df MS Number of obs = 9
-------------+------------------------------ F( 2, 6) = 6.88

Model | 1394.3493 2 697.174648 Prob > F = 0.0280
Residual | 608.150703 6 101.358451 R-squared = 0.6963

-------------+------------------------------ Adj R-squared = 0.5951
Total | 2002.5 8 250.3125 Root MSE = 10.068

------------------------------------------------------------------------------
Distance | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
Year | 225.7233 141.1208 1.60 0.161 -119.5868 571.0333

Yearsq | -.0570718 .0358538 -1.59 0.163 -.1448028 .0306591
_cons | -222852.3 138860.1 -1.60 0.160 -562630.8 116926.1

------------------------------------------------------------------------------

********************

(a) Give the units and interpretation of b1 in the simple regression model.
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Solution: The regression coefficient b1 always gives than change in Y associated with a one unit change in
X. Since b1 must convert from X units to Y units, the units of b1 are the units of Y divided by the units of
X. In this problem, X is in years and Y is distance in inches, so the units of b1 are inches per year. Since
b1 = 1.08854, a one unit change in year is associated with a 1.08854 inch change in distance, i.e. the winning
long jump distance increases by 1.08854 inches per year. Naturally, since the Olympics are only held every
four years, this really means that the winning distance increases by about 4.35 inches every Olympiad.

(b) What proportion of the variability in distance is explained by year using the simple linear regression
model? Does the model do a good job in this respect?

Solution: The proportion or percentage of variability explained by the regression is given by R2 = 56.8%,
or, if we want an unbiased estimate, by R2

adj = 50.6. Whichever number you use, the regression is explaining
barely over half the variability and leaving nearly half the variability unexplained. This is not very good,
though it is certainly better than nothing.

(c) Does the simple linear regression model do a good job of predicting the Y values? Make sure you justify
your answer.

Solution: This was one of the most frequently missed questions on the exam on which it appeared. In
order to tell whether a regression makes good predictions, you need to know how big the errors made by the
regression are. One way of evaluating this is to look at the typical distance from the points to the regression
line. This number is estimated by sY |X =

√
MSE. This number can be found as Root MSE on the printout,

or by taking the square root of MSE from the ANOVA table. Here RMSE =
√

123.57 = 11.1161. To tell
whether this means the errors are large, we must compare RMSE to the Y values we are trying to predict.
The Y values in this problem range from 298 to 336. Thus we are making an error of roughly 3-4%. This
seems pretty good. However, we really should consider the context of the problem. The errors we are making
are on the order of 11 inches–nearly a foot. Long jump competitions are usually decided by much less than
this so our errors, in context, are still rather large. Note: Many people tried to use R2 or an F test to
say whether the model is a good predictor. These values try to get at whether the model explains a lot of
variability. You can explain quite a lot of variability and still have bad predictions.

(d) Is there a significant linear relationship between years and distance? Justify your answer using an ap-
propriate test.

Solution: We could use either a t test or an F test since they are the same for simple linear regression. Our
null and alternative hypotheses are

H0 : β1 = 0–i.e. there is not a significant relationship
HA : β1 6= 0–i.e. there is a significant relationship between the year and the distance of the winning long jump.

From the printout, the test statistics are tobs = 3.03 for the t test, and F = 9.2057 for the F test. In
both cases, the p-value for the test is .0190 which is much less than α = .05. Therefore, we reject the null
hypothesis and conclude that there is a significant linear relationship between year and the winning long
jump distance. To get full credit, you only needed to quote the p-value and explain your conclusions.

(e) In 1968, the Olympics were held in Mexico City, and many records were set, probably due to the high
altitude. Explain what diagnostics you could use to determine whether this point is an outlier or an influ-
ential point and what each one would tell you. Intuitively do you expect the point to be highly influential?
Does it appear to have high leverage? Is it an outlier? Explain. What would happen to your answers to
(b)-(d) if this point were removed?
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Solution: We could use a whole slew of diagnostics to determine the status of the point: the studentized
residual to see if what was an outlier in the sense of a big error, the leverage value to see how much abil-
ity it had to tilt the regression line, DFFits, DFBetas and Cook’s Distance to see how much effect the
point had on the fitted value or regression coefficients. I suspect that 1968 point is both an outlier and
an influential point but not a high leverage point. Visually it sticks well up above the path of the rest of
the points. Since the data set is small it will probably be influential, shifting the whole line up. However
since its X value is right in the middle of the data set it will probably not have super high leverage and
the actual slope of the line may not change much. If the point is removed, the regression line will go right
through the middle of the rest of the points. Thus the amount of unexplained variability will be smaller
and the amount of explained variability will be higher. This will cause R2 to go up, sY |X to go down
(and hence we will get better predictions), and F to increase (resulting in a lower p-value for our test). It
is never easy without removing a point and refitting the regression to tell just how influential that point
is. In this case it turns out the point is highly influential. For instance, R2 goes up from 56% to well over
90% if you refit the model without the point. You can actually try this out from the given data if you want to.

(f) Use STATA to get the residual, histogram, and normal quantile plots for the simple linear regression (or
if you don’t want to take the time to do so just look at the scatterplot above.) Does it appear that any of
our regression assumptions have been violated? Make sure you state each of the assumptions that can be
checked with each plot and whether you think they are OK. What do you think is causing any problems you
see, and how might you fix them?

Solution: Using a residual plot we can check mean 0, constant variance, and independence/appropriateness
of the linear model. Normality can be checked with a histogram and/or QQ plot.

From the residual plot, it appears that the mean 0 assumption is violated. For most values of X, the residuals
are all negative. We need the residuals to be centered about the line. This is caused in part by the influential
point in 1968. If we took the point out, the regression would go more through the middle of the remaining
points and the residuals would be more balanced. However I think there might still be a curved shape, from
the dip in the 60s and 70’s so I would still consider this assumption to be violated.

Whether you consider the constant variance assumption to be met depends on whether or not you include
the 1968 point. If you do, the spread of the residuals is much wider at 1968 than anywhere else. If you leave
the point out, there is a fairly even band around the residuals. In general I prefer not to judge a model bad
if there is only a single point causing the problems so I would say this assumption is mostly OK.

The assumption that caused the most disagreement was the one involving independence/appropriateness of
the linear model. I see a bit of a curved pattern in this data but it is hard to tell, especially given the 1968
point and the fact that we only have one observation every 4 years whetehr this is meaningful. We gave
credit on this assumption either way as long as people explained carefully.

Normality also looks a little questionable for this data as the histogram is not too symmetric and the points
in the quantile plot don’t follow the straight line all that well. It’s not terrible but overall I would say this
assumption is violated too.

No matter what you think is the right model for this data, the 1968 point makes the error assumptions much
more questionable. Removing it will definitely improve the model. It is OK to remove the point in this case
because we have a good reason to believe it is abnormal and not representative of what will happen in the
future. Mexico City is at an extremely high altitude and this resulted in abnormally strong performances in
the short distance track and field events.
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(g) A zealous sports fan suggests that the winning distance in the long jump cannot increase for ever,
but should instead level off. He therefore suggests fitting a curvilinear regression to the data. The second
printout shows the results of fitting the model

Y = β0 + β1Y ear + β2Y ear2

Is it worth adding the term Y ear2 to the model based on the data presented here? Answer this question
using an appropriate test. Make sure you state the null and alternative hypotheses, the p-value for the test,
and your conclusions. Is this likely to introduce multicollinearity to the model? Explain why it might, how
you could check, and what you could do to fix the problem if it exists. Try it and see if it helps. Finally, in
real-world terms is the quadratic model likely to be completely appropriate for this data? Can you suggest
an alternate transformation that might be better? Explain.

Solution: First, I certainly agree with the sports fan that the winning long jump distance should level off
eventually. The real issues are (a) has that leveling off already begun or is a linear model OK in the range
of data we have, and (b) is a parabolic model the right one to take into account the leveling off. The data
does not curve too much, so I suspect the answer to (a) is that a linear model is OK for now. Logically, I
think the answer to (b) is no–parabolas do not level off as X increases. Thus I suspect ahead of time that
the term Y ears2 is not going to add much to this model. To check this, I need to do a t test to see whether
β2 = 0. The null and alternative hypotheses are as usual

H0 : β2 = 0–i.e. Y ears2 does not add anything to the model beyond what was already given by Year
HA : β2 6= 0–i.e. Y ear2 does make a significant contribution to the model

From the curvilinear regression printout, the test statistic is tobs = −1.59 and the p-value is .163. Since
this p-value is much larger than α = .05 we fail to reject the null hypothesis and conclude that Y ear2 adds
nothing new to the model. It is not worth including when Year is already in the model. Note: Many people
who took this exam tried to use an F test. This is a multiple regression problem. In multiple regression, an
F test checks whether the variables collectively are useful. In this case, the F test is significant. However,
that only tells us that at least one of Year and Year2 is useful–it says nothing specific about Year2.

There probably is multicollinearity here between X and X2 as from the plot even if the relationship is curved
we are in the part of the parabola where the relationship is not that nonlinear. We could check this by getting
either the correlation between X and X2 or by computing the variance inflation factors. We could center
the predictors (by subtracting off the mean of X) to reduce the problem. It is possible this could actually
improve the significance of the coefficients by reducing the standard error though I doubt it will help much
in this case. A quadratic model is probably not the right choice. Using an inverse model (1/X) might work
better as that will actually level off as X gets bigger in line with our physical expectations.

(3) Regression Assumptions

A residual plot from a simple linear regression analysis is shown below. It is followed by four statements
about the error assumptions for this model. In each case, say whether the statement is correct. If the
statement is not correct, give an appropriate statement about the error assumption referred to.

Y | ** **
| * **
| * * * *

0|---------*---------------
| ** ***
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| * * *
| * *
--------------------------X

(a) The mean 0 assumption is correct because there are approximately as many residuals above the line as
below it.

Solution: This is FALSE. We need the points to be centered about the line for EVERY value of X, not just
overall. The mean 0 assumption is clearly violated for this plot. The residuals are positive, then negative,
then positive again.

(b) The constant variance assumption is violated because there is a curved pattern to the data.

Solution: This is FALSE. The constant variance assumption has nothing to do with whether there is a
curved pattern to the data. It has to do with whether the points have the same spread for each value of X.
If we draw a band about these points it seems to be of roughly constant width. Thus the constant variance
assumption is not violated.

(c) The errors for this data set are approximately normally distributed.

Solution: We can’t really tell that from the residual plot. We would need a histogram or a normal quantile
plot to determine this properly.

(d) A linear model is not appropriate for this data set because of the curved pattern in the data.

Solution: This is TRUE. The curved pattern in the points suggests that a polynomial model is probably
more appropriate for this data.
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